Exercise 14

Graph the two basic solutions along with several other solutions of the differential equation. What features do the solutions have in common?

$$
4 \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+y=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad \frac{d y}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y}{d x^{2}}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
4\left(r^{2} e^{r x}\right)-4\left(r e^{r x}\right)+e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
4 r^{2}-4 r+1=0
$$

Solve for r.

$$
\begin{gathered}
(2 r-1)^{2}=0 \\
r=\left\{\frac{1}{2}\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{x / 2}$ and $x e^{x / 2}$. By the principle of superposition, then,

$$
y(x)=C_{1} e^{x / 2}+C_{2} x e^{x / 2}
$$

where C_{1} and C_{2} are arbitrary constants.

Below is a graph of these two solutions.

Both solutions blow up as $x \rightarrow \infty$.

